A construction of the affine VW supercategory

Mee Seong Im
United States Military Academy
West Point, NY

Institute for Computational and Experimental Research in Mathematics
Brown University, Providence, RI

Joint with
 Martina Balagovic, Zajj Daugherty, Inna Entova-Aizenbud, Iva Halacheva, Johanna Hennig, Gail Letzter, Emily Norton, Vera Serganova, and Catharina Stroppel.

Background: vector superspaces. Work over \mathbb{C}.

A \mathbb{Z}_{2}-graded vector space $V=V_{\overline{0}} \oplus V_{\overline{1}}$ is a vector superspace.
The superdimension of V is

$$
\operatorname{dim}(V):=\left(\operatorname{dim} V_{\overline{0}} \mid \operatorname{dim} V_{\overline{1}}\right)=\operatorname{dim} V_{\overline{0}}-\operatorname{dim} V_{\overline{1}} .
$$

Given a homogeneous element $v \in V$, the parity (or the degree) of v is denoted by $\bar{v} \in\{\overline{0}, \overline{1}\}$.

The parity switching functor π sends $V_{\overline{0}} \mapsto V_{\overline{1}}$ and $V_{\overline{1}} \mapsto V_{\overline{0}}$.
Let $m=\operatorname{dim} V_{\overline{0}}$ and $n=\operatorname{dim} V_{\overline{1}}$.

A Lie superalgebra is a \mathbb{Z}_{2}-graded vector space $\mathfrak{g}=\mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ with a Lie superbracket (supercommutator) [,]: $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ that satisfies super skew symmetry

$$
[x, y]=x y-(-1)^{\bar{x} \bar{y}} y x=-(-1)^{\bar{x} \bar{y}}[y, x]
$$

and super Jacobi identity

$$
[x,[y, z]]=[[x, y], z]+(-1)^{\bar{x} \bar{y}}[y,[x, z]],
$$

for x, y, and z homogeneous.
Now, given a homogeneous ordered basis for

$$
V=\underbrace{\mathbb{C}\left\{v_{1}, \ldots, v_{m}\right\}}_{V_{\overline{0}}} \oplus \underbrace{\mathbb{C}\left\{v_{1^{\prime}}, \ldots, v_{n^{\prime}}\right\}}_{V_{\overline{1}}}
$$

the Lie superalgebra is the endomorphism algebra $\operatorname{End}_{\mathbb{C}}(V)$ explicitly given by

Matrix representation for $\mathfrak{g l}(m \mid n)$.

$$
\mathfrak{g l}(m \mid n):=\left\{\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right): A \in M_{m, m}, \quad B, C^{t} \in M_{m, n}, \quad D \in M_{n, n}\right\},
$$

where $M_{i, j}:=M_{i, j}(\mathbb{C})$.
Since $\mathfrak{g l}(m \mid n)=\mathfrak{g l}(m \mid n)_{\overline{0}} \oplus \mathfrak{g l}(m \mid n)_{\overline{1}}$,

$$
\mathfrak{g l}(m \mid n)_{\overline{0}}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)\right\} \quad \text { and } \quad \mathfrak{g l}(m \mid n)_{\overline{\overline{1}}}=\left\{\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right)\right\} .
$$

We say $\mathfrak{g l}(m \mid n)$ is the general linear Lie superalgebra, and V is the natural representation of $\mathfrak{g l}(m \mid n)$.

The grading on $\mathfrak{g l}(m \mid n)$ is induced by V.

Periplectic Lie superalgebras $\mathfrak{p}(n)$.

Let $m=n$. Then

$$
V=\mathbb{C}^{2 n}=\underbrace{\mathbb{C}\left\{v_{1}, \ldots, v_{n}\right\}}_{V_{\overline{0}}} \oplus \underbrace{\mathbb{C}\left\{v_{1^{\prime}}, \ldots, v_{n^{\prime}}\right\}}_{V_{\overline{1}}}
$$

Define $\beta: V \otimes V \rightarrow \mathbb{C}=\mathbb{C}_{\overline{0}}$ as an odd, symmetric, nondegenerate bilinear form satisfying:

$$
\beta(v, w)=\beta(w, v), \quad \beta(v, w)=0 \quad \text { if } \bar{v}=\bar{w} .
$$

That is, β satisfies

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) .
$$

We define periplectic (strange) Lie superalgebras as:

$$
\mathfrak{p}(n):=\left\{x \in \operatorname{End}_{\mathbb{C}}(V): \beta(x v, w)+(-1)^{\overline{x v}} \beta(v, x w)=0\right\} .
$$

In terms of the above basis,

$$
\mathfrak{p}(n)=\left\{\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right) \in \mathfrak{g l}(n \mid n): B=B^{t}, C=-C^{t}\right\},
$$

where

$$
\mathfrak{p}(n)_{\overline{0}}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & -A^{t}
\end{array}\right)\right\} \cong \mathfrak{g l}_{n}(\mathbb{C}) \quad \text { and } \quad \mathfrak{p}(n)_{\overline{1}}=\left\{\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right)\right\}
$$

Symmetric monoidal structure.

Consider the category \mathcal{C} of representations of $\mathfrak{p}(n)$, where

$$
\begin{aligned}
\operatorname{Hom}_{\mathfrak{p}(n)}\left(V, V^{\prime}\right):=\{f: & V \rightarrow V^{\prime}: f \text { homogeneous, } \mathbb{C} \text {-linear, } \\
& \left.f(x \cdot v)=(-1)^{\overline{x f}} x . f(v), v \in V, x \in \mathfrak{p}(n)\right\} .
\end{aligned}
$$

Then the universal enveloping algebra $U(\mathfrak{p}(n))$ is a Hopf superalgebra:

- (coproduct) $\Delta(x)=x \otimes 1+1 \otimes x$,
- (counit) $\epsilon(x)=0$,
- (antipode) $\mathrm{S}(\mathrm{x})=-\mathrm{x}$.

So \mathcal{C} is a monoidal category.
Now for $x \otimes y \in U(\mathfrak{p}(n)) \otimes U(\mathfrak{p}(n))$ on $v \otimes w$,

$$
(x \otimes y) \cdot(v \otimes w)=(-1)^{\overline{y v}} x v \otimes y w .
$$

Symmetric monoidal structure.

For $x, y, a, b \in U(\mathfrak{p}(n))$, multiplication is defined as

$$
(x \otimes y) \circ(a \otimes b):=(-1)^{\overline{y a}}(x \circ a) \otimes(y \circ b),
$$

and for two representations V and V^{\prime}, the super swap

$$
\sigma: V \otimes V^{\prime} \longrightarrow V^{\prime} \otimes V, \quad \sigma(v \otimes w)=(-1)^{\overline{v w}} w \otimes v
$$

is a map of $\mathfrak{p}(n)$-representations whose dual satisfies $\sigma^{*}=-\sigma$.
Thus \mathcal{C} is a symmetric monoidal category.

Furthermore, β induces an identification between V and its dual V^{*} via $V \rightarrow V^{*}, \quad v \mapsto \beta(v,-), \quad$ identifying $V_{\overline{1}}$ with $V_{\overline{0}}^{*}$ and $V_{\overline{0}}$ with $V_{\overline{1}}^{*}$.

This induces the dual map (where $\bar{\beta}=\overline{\beta^{*}}=1$)

$$
\beta^{*}: \mathbb{C} \cong \mathbb{C}^{*} \longrightarrow(V \otimes V)^{*} \cong V \otimes V, \quad \beta^{*}(1)=\sum_{i} v_{i^{\prime}} \otimes v_{i}-v_{i} \otimes v_{i^{\prime}}
$$

Quadratic (fake) Casimir Ω \& Jucys-Murphy elements

 ye's.Now, define

$$
\Omega:=2 \sum_{x \in \mathcal{X}} x \otimes x^{*} \in \mathfrak{p}(n) \otimes \mathfrak{g l}(n \mid n) \quad(2 \Omega=X+\underset{\frown}{\smile}),
$$

where \mathcal{X} is a basis of $\mathfrak{p}(n)$ and $x^{*} \in \mathfrak{p}(n)^{*}$ is a dual basis element of $\mathfrak{p}(n)$, with $\mathfrak{p}(n)^{*}=\mathfrak{p}(n)^{\perp}$, taken with respect to the supertrace:

$$
\operatorname{str}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{tr}(A)-\operatorname{tr}(D)
$$

The actions of Ω and $\mathfrak{p}(n)$ commute on $M \otimes V$, so Ω is in the centralizer $\operatorname{End}_{\mathfrak{p}(n)}(M \otimes V)$.

We define

$$
Y_{\ell}: M \otimes V^{\otimes a} \longrightarrow M \otimes V^{\otimes a} \quad \text { as } \quad Y_{\ell}:=\sum_{i=0}^{\ell-1} \Omega_{i, \ell}=\boldsymbol{\phi}
$$

where $\Omega_{i, \ell}$ acts on the i-th and ℓ-th factor, and identity otherwise, where the 0 -th factor is the module M.

Review: classical Schur-Weyl duality.

Let W be an n-dimensional complex vector space. Consider $W^{\otimes a}$. Then the symmetric group S_{a} acts on $W^{\otimes a}$ by permuting the factors: for $s_{i}=(i i+1) \in S_{a}$,

$$
s_{i} \cdot\left(w_{1} \otimes \cdots \otimes w_{a}\right)=w_{1} \otimes \cdots \otimes w_{i+1} \otimes w_{i} \otimes \cdots \otimes w_{a} .
$$

We also have the full linear group $G L(W)$ acting on $W^{\otimes a}$ via the diagonal action: for $g \in G L(W)$,

$$
g .\left(w_{1} \otimes \cdots \otimes w_{a}\right)=g w_{1} \otimes \cdots \otimes g w_{a} .
$$

Then actions of $G L(W)$ (left natural action) and S_{a} (right permutation action) commute giving us the following:

Classical Schur-Weyl duality.

Consider the natural representations

$$
\left(\mathbb{C} S_{a}\right)^{o p} \xrightarrow{\phi} \operatorname{End}_{\mathbb{C}}\left(W^{\otimes a}\right) \text { and } G L(W) \xrightarrow{\psi} \operatorname{End}_{\mathbb{C}}\left(W^{\otimes a}\right) .
$$

Then Schur-Weyl duality gives us
(1) $\phi\left(\mathbb{C} S_{a}\right)=\operatorname{End}_{G L(W)}\left(W^{\otimes a}\right)$,
(2) if $n \geq a$, then ϕ is injective. So $\operatorname{im} \phi \cong \operatorname{End}_{G L(W)}\left(W^{\otimes a}\right)$,
(3) $\psi(G L(W))=\operatorname{End}_{\mathbb{C} S_{a}}\left(W^{\otimes a}\right)$,
(4) there is an irreducible $\left(G L(W),\left(\mathbb{C} S_{a}\right)^{o p}\right)$-bimodule decomposition (see next slide):

Classical Schur-Weyl duality (continued).

$$
W^{\otimes a}=\bigoplus_{\substack{\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)+a \\ \ell(\lambda) \leq n}} \Delta_{\lambda} \otimes S^{\lambda}
$$

where

- Δ_{λ} is an irreducible $G L(W)$-module associated to the partition λ,
- S^{λ} is an irreducible $\mathbb{C} S_{a}$ (Specht) module associated to λ, and
- $\ell(\lambda)=\max \left\{i \in \mathbb{Z}: \lambda_{i} \neq 0, \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)\right\}$.

In the above setting, we say $\mathbb{C} S_{a}$ and $G L(W)$ in $\operatorname{End}_{\mathbb{C}}\left(W^{\otimes a}\right)$ are centralizers of one another.

Other cases of Schur-Weyl duality.

For the orthogonal group $O(n)$ and symplectic group $\mathrm{Sp}_{2 n}$, the symmetric group S_{n} should be replaced by a Brauer algebra.

A Brauer algebra $\mathrm{Br}_{a}^{(x)}$ with a parameter $x \in \mathbb{C}$ is a unital \mathbb{C}-algebra with generators $s_{1}, \ldots, s_{a-1}, e_{1}, \ldots, e_{a-1}$ and relations:

$$
\begin{aligned}
s_{i}^{2}=1, \quad e_{i}^{2}=x e_{i}, \quad e_{i} s_{i}=e_{i}=s_{i} e_{i} & \text { for all } 1 \leq i \leq a-1 \\
s_{i} s_{j}=s_{j} s_{i}, \quad s_{i} e_{j}=e_{j} s_{i}, \quad e_{i} e_{j}=e_{j} e_{i} & \text { for all } 1 \leq i<j-1 \leq a-2, \\
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} & \text { for all } 1 \leq i \leq a-2 \\
e_{i} e_{i+1} e_{i}=e_{i}, e_{i+1} e_{i} e_{i+1}=e_{i+1} & \text { for all } 1 \leq i \leq a-2 \\
s_{i} e_{i+1} e_{i}=s_{i+1} e_{i}, \quad e_{i+1} e_{i} s_{i+1}=e_{i+1} s_{i} & \text { for all } 1 \leq i \leq a-2
\end{aligned}
$$

The group ring of the $\operatorname{Brauer}^{2 l g e b r a ~} \mathrm{Br}_{a}^{(n)}$ and $O(n)$ in $\operatorname{End}\left(W^{\otimes a}\right)$ centralize one another, where $\operatorname{dim} W=n$,
the group ring of the Brauer algebra $\mathrm{Br}_{a}^{(-2 n)}$ and $\mathrm{Sp}_{2 n}$ in $\operatorname{End}\left(V^{\otimes a}\right)$ centralize one another, where $\operatorname{dim} V=2 n$.

Now, in higher Schur-Weyl duality, we construct a result analogous to

$$
\mathbb{C} S_{a} \cong \operatorname{End}_{G L(W)}\left(W^{\otimes a}\right),
$$

but we use the existence of commuting actions on the tensor product of arbitrary $\mathfrak{g l}_{n}$-representation M with $W^{\otimes a}$:

$$
\mathfrak{g l}_{n} \circlearrowright M \otimes W^{\otimes a} \circlearrowleft H_{a},
$$

where H_{a} is the degenerate affine Hecke algebra, i.e., it is a deformation of the symmetric group S_{a}.

The algebra H_{a} has generators $s_{1}, \ldots, s_{a-1}, y_{1}, \ldots, y_{a}$ and relations

$$
\begin{aligned}
s_{i}^{2} & =1 \\
s_{i} s_{j} & =s_{j} s_{i} \quad \text { whenever }|i-j|>1 \\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} \\
y_{i} y_{j} & =y_{j} y_{i} \\
y_{i} s_{j} & =s_{j} y_{i} \quad \text { whenever } i-j \neq 0,1 \\
y_{i+1} s_{i} & =s_{i} y_{i}+1
\end{aligned}
$$

The Hecke algebra H_{a} contains the symmetric algebra $\mathbb{C} S_{a}$ and the polynomial algebra $\mathbb{C}\left[y_{1}, \ldots, y_{a}\right]$ as subalgebras.

So as a vector space, $H_{a} \cong \mathbb{C} S_{a} \otimes \mathbb{C}\left[y_{1}, \ldots, y_{a}\right]$, and has a basis

$$
\mathcal{B}=\left\{w y_{1}^{k_{1}} \cdots y_{a}^{k_{a}}: w \in S_{a}, k_{i} \in \mathbb{N}_{0}\right\}
$$

Our goal: construct higher Schur-Weyl duality for $\mathfrak{p}(n)$.

That is, construct another algebra whose action on $M \otimes V^{\otimes a}$ commutes with the action of $\mathfrak{p}(n)$.

This algebra is precisely the degenerate affine Brauer superalgebra $s W_{a}$.

Degenerate affine Brauer superalgebras (generators and local moves).

$s \mathbb{W}_{a}$ has generators $s_{i}, b_{i}, b_{i}^{*}, y_{j}$, where $i=1, \ldots, a-1, j=1, \ldots, a$ and relations

Continued in the next slide.

Degenerate affine Brauer superalgs (local moves).

$$
\begin{aligned}
& \bigcup \cap=-\cup \\
& \bigcap \cup=-\cap \\
& X=\mid \quad \text { (braid reln) } \\
& X=X \\
& \text { (braid reln) } \\
& \cup=-1 \\
& \text { (adjunction) } \\
& U=X \\
& \text { (untwisting reln) } \\
& \bigcap=X \\
& \Varangle=-\bigcup \text { (untwisting reln) } \\
& Q=\bigcap
\end{aligned}
$$

Degenerate affine Brauer superalgs (local moves).

$$
\begin{aligned}
& \text { - } X=\dagger \text { ’ }
\end{aligned}
$$

$$
\begin{aligned}
& 1=\cdot \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \cup=\iota^{\smile} \\
& 1 \cdot=\times+X-乞 \\
& \rightarrow-\cap=-\cap
\end{aligned}
$$

Lemma. For any $k \geq 0$,

$$
k \oslash=0
$$

Normal diagrams.

Call a diagram $d \in \operatorname{Hom}_{s \mathcal{B} r}(a, b)$ normal if all of the following hold:

- any two strings intersect at most once;
- no string intersects itself;
- no two cups or caps are at the same height;
- all cups are above all caps;
- the height of caps decreases when the caps are ordered from left to right with respect to their left ends;
- the height of cups increases when the cups are ordered from left to right with respect to their left ends.
Every string in a normal diagram has either one cup, or one cap, or no cups and caps, and there are no closed loops. A diagram with no loops in $\operatorname{Hom}_{s \mathcal{B} r}(a, b)$ has $\frac{a+b}{2}$ strings. In particular, if $a+b$ is odd then the Hom-space is zero.

Example: normal diagram in the signed Brauer algebra $s \mathcal{B} r_{a}$.

Algebraically, it is written as $s_{2} s_{3} s_{5} b_{2}^{*} b_{2} b_{4}^{*} b_{4} s_{1} s_{3} s_{6}$.

The monomial corresponding to a normal diagram is called a regular monomial.

Connectors.

Each normal diagram $d \in \operatorname{Hom}_{s \mathcal{B} r}(a, b)$, where $a, b \in \mathbb{N}_{0}$, gives rise to a partition $P(d)$ of the set of $a+b$ points into 2 -element subsets given by the endpoints of the strings in d.

We call such a partition a connector, and write $\operatorname{Conn}(a, b)$ as the set of all such connectors. Its size is $(a+b-1)!!$.

Example. Let $a=b=2$. Label the endpoints along the bottom row of d as 1 and 2 (reading from left to right), and label the endpoints along the top row of d as $\overline{1}$ and $\overline{2}$ (reading from left to right). Then

Three possible connectors for a diagram in $\operatorname{Hom}_{s \mathcal{B} r}(2,2)$:

$$
\begin{aligned}
& P\left(d_{I}\right)=\{\{1, \overline{1}\},\{2, \overline{2}\}\}, \\
& P\left(d_{s}\right)=\{\{1, \overline{2}\},\{2, \overline{1}\}\}, \\
& P\left(d_{e}\right)=\{\{1,2\},\{\overline{1}, \overline{2}\}\},
\end{aligned}
$$

and $\operatorname{Conn}(2,2)=\left\{P\left(d_{I}\right), P\left(d_{s}\right), P\left(d_{e}\right)\right\}$.

For each connector $c \in \operatorname{Conn}(a, b)$, we pick a normal diagram $d_{c} \in P^{-1}(c) \subset \operatorname{Hom}_{s \mathcal{B} r}(a, b)$.

Remark. Different normal diagrams in a single fibre $P^{-1}(c)$ differ only by braid relations, and thus represent the same morphism.

Theorem (BDEHHILNSS)

The set $S_{a, b}=\left\{d_{c}: c \in \operatorname{Conn}(a, b)\right\}$ is a basis of $\operatorname{Hom}_{s \mathcal{B} r}(a, b)$.

A dotted diagram $d \in \operatorname{Hom}_{s \mathbb{V}}(a, b)$ is normal if:

- the underlying diagram obtained by erasing the dots is normal;
- all dots on cups and caps are on the leftmost end, and all dots on the through strings are at the bottom.
Example. A normal diagram in $\operatorname{Hom}_{s \mathbb{W}}(7,7)$:

Algebraically, it is written as $y_{2}^{4} s_{2} s_{3} s_{5} b_{2}^{*} b_{2} b_{4}^{*} b_{4} s_{1} s_{3} s_{6} y_{1} y_{2}^{3} y_{3} y_{6}$.

Normal dotted diagrams.

Let $S_{a, b}^{\bullet}$ be the normal dotted diagrams obtained by taking all diagrams in $S_{a, b}$ and adding dots to them in all possible ways.

Let $S_{a, b}^{\leq k} \subseteq S_{a, b}^{\bullet}$ be the diagrams with at most k dots.

Theorem (Basis theorem, BDEHHILNSS)
The set $S_{a, b}^{\leq k}$ is a basis of $\operatorname{Hom}_{s \mathbb{W}}(a, b) \leq k$, and the set $S_{a, b}^{\bullet}$ is a basis of $\operatorname{Hom}_{s \mathbb{W}}(a, b)$.

Our affine VW superalgebra $s \mathbb{W}_{a}$ is:

- super (signed) version of the degenerate BMW algebra,
- the signed version of the affine VW algebra, and
- an affine version of the Brauer superalgebra.

The center of $s W_{a}=\operatorname{End}_{s \mathbb{V}}(a), a \geq 2 \in \mathbb{N}$.

Theorem (BDEHHILNSS)
The center $Z\left(s \mathbb{W}_{a}\right)$ consists of all polynomials of the form

$$
\prod_{1 \leq i<j \leq a}\left(\left(y_{i}-y_{j}\right)^{2}-1\right) \tilde{f}+c,
$$

where $\tilde{f} \in \mathbb{C}\left[y_{1}, \ldots, y_{a}\right]^{S_{a}}$ and $c \in \mathbb{C}$.

The deformed squared Vandermonde determinant $\prod_{1 \leq i<j \leq a}\left(\left(y_{i}-y_{j}\right)^{2}-1\right)$ is symmetric, so

$$
\prod_{1 \leq i<j \leq a}\left(\left(y_{i}-y_{j}\right)^{2}-1\right) \in \mathbb{C}\left[y_{1}, \ldots, y_{a}\right]^{S_{a}} .
$$

Affine VW supercategory $s W$ and connections to Brauer supercategory $s \mathcal{B} r$.

The affine VW supercategory (or the affine Nazarov-Wenzl supercategory) is the \mathbb{C}-linear strict monoidal supercategory generated as a monoidal supercategory by a single object \star, morphisms
$s=\Varangle: \star \otimes \star \longrightarrow \star \otimes \star, b=\cap: \star \otimes \star \rightarrow \mathbf{1}$,
$b^{*}=\cup: 1 \rightarrow \star \otimes \star$, and an additional morphism
$y=\boldsymbol{\phi}: \star \otimes \star \longrightarrow \star \otimes \star$, subject to the braid, snake (adjunction), and untwisting relations, and the dot relations:

$$
\boldsymbol{\bullet}=\boldsymbol{X}+X-乞 \quad \Gamma_{\bullet}=\boldsymbol{\bullet}+\cap .
$$

Objects in $s \mathbb{W}$ can be identified with natural numbers, identifying $a \in \mathbb{N}_{0}$ with $\star^{\otimes a}, \star^{\otimes 0}=1$, and the morphisms are linear combinations of dotted diagrams.

$s W$ and $s \mathcal{B} r$.

The category $s \mathbb{W}$ can alternatively be generated by vertically stacking b_{i}, b_{i}^{*}, s_{i}, and $y_{i}=1_{i-1} \otimes y \otimes 1_{a-i} \in \operatorname{Hom}_{s \mathbb{W}}(a, a)$.

It is a filtered category, i.e., the hom spaces $\operatorname{Hom}_{s \mathbb{W}}(a, b)$ have a filtration by the span $\operatorname{Hom}_{s \mathbb{W}}(a, b) \leq k$ of all dotted diagrams with at most k dots.

The Brauer supercategory $s \mathcal{B} r$ is the \mathbb{C}-linear strict monoidal supercategory generated as a monoidal supercategory by a single object \star, and morphisms $s=X: \star \otimes \star \longrightarrow \star \otimes \star$, $b=\cap: \star \otimes \star \rightarrow \mathbf{1}$, and $b^{*}=\cup: 1 \rightarrow \star \otimes \star$, subject to the relations above.

If M is the trivial representation, then actions on $s \mathbb{W}$ factor through $s \mathcal{B} r$.

Thank you. Questions?

The algebra A_{\hbar} and its specializations A_{t}, where $t \in \mathbb{C}$.

Definition

Let A_{\hbar} be the superalgebra over $\mathbb{C}[\hbar]$ with generators s_{i}, e_{i}, y_{j} for $1 \leq i \leq a-1,1 \leq j \leq a$, where $\overline{s_{i}}=\overline{e_{i}}=\overline{y_{j}}=0$, subject to the relations:
(1) Involutions: $s_{i}^{2}=1$ for $1 \leq i<a$.
(2) Commutation relations:
(3) Affine braid relations:
(1) $s_{i} s_{j}=s_{j} s_{i}$ if $|i-j|>1$,
(2) $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$ for
$1 \leq i \leq a-1$,
(3) $s_{i} y_{j}=y_{j} s_{i}$ if $j \neq i, i+1$.
(4) Snake relations:
(1) $e_{i+1} e_{i} e_{i+1}=-e_{i+1}$,
$e_{i} e_{i+1} e_{i}=-e_{i}$ for $1 \leq i \leq a-2$.
(5) Tangle and untwisting relations:
(1) $e_{i} s_{i}=e_{i}$ and $s_{i} e_{i}=-e_{i}$ for

$$
\begin{aligned}
& \text { (1) } s_{i} e_{j}=e_{j} s_{i} \text { if }|i-j|>1, \\
& \text { (2) } e_{i} e_{j}=e_{j} e_{i} \text { if }|i-j|>1, \\
& \text { (3) } e_{i} y_{j}=y_{j} e_{i} \text { if } j \neq i, i+1, \\
& \text { (4) } y_{i} y_{j}=y_{j} y_{i} \text { for } 1 \leq i, j \leq a .
\end{aligned}
$$

(2) $s_{i} \bar{e}_{i+1} e_{i}=s_{i+1} e_{i}$,
(3) $s_{i+1} e_{i} e_{i+1}=-s_{i} e_{i+1}$,
(4) $e_{i+1} e_{i} s_{i+1}=e_{i+1} s_{i}$,
(5) $e_{i} e_{i+1} s_{i}=-e_{i} s_{i+1}$ for $1 \leq i \leq a-2$.
6) Idempotent relations: $e_{i}^{2}=0$ for $1 \leq i \leq a-1$.
(7) Skein relations:
(1) $s_{i} y_{i}-y_{i+1} s_{i}=-\hbar e_{i}-\hbar$,
$y_{i} s_{i}-s_{i} y_{i+1}=\hbar e_{i}-\hbar$ for
$1 \leq i \leq a-1$.
(8) Unwrapping relations: $e_{1} y_{1}^{k} e_{1}=0$ for $k \in \mathbb{N}$.
(9) (Anti)-symmetry relations:
(1) $e_{i}\left(y_{i+1}-y_{i}\right)=\hbar e_{i}$,
$\left(y_{i+1}-y_{i}\right) e_{i}=-\hbar e_{i}$ for
$1 \leq i \leq a-1$.

For $t \in \mathbb{C}$, let A_{t} be the quotient of A_{\hbar} by the ideal generated by $\hbar-t$.

A sketch of proof of the Theorem on slide 27.

(1) The filtered algebra $s \mathbb{W}_{a}$ (via the filtration by the degree of the polynomials in $\left.\mathbb{C}\left[y_{1}, \ldots, y_{a}\right]\right)$ is a Poincaré-Birkhoff-Witt (PBW) deformation of the associated graded superalgebra $g s \mathbb{W}_{a}=\operatorname{gr}\left(s \mathbb{W}_{a}\right)$,
(2) For \hbar a parameter, the Rees construction gives the algebra A_{\hbar} over $\mathbb{C}[\hbar]$ such that the specializations $\hbar=1$ and $\hbar=0$ are precisely $A_{1}=s \mathbb{W}_{a}$ and $A_{0}=g s \mathbb{W}_{a}$,
(3) Describe the center of the $\mathbb{C}[\hbar]$-algebra A_{\hbar}, and all its specializations A_{t} for any $t \in \mathbb{C}$ using the Basis Theorem,
(4) Determine the center of $g s \mathbb{W}_{a}$ using the isomorphism $\operatorname{Rees}\left(Z\left(A_{1}\right)\right) \cong Z\left(\operatorname{Rees}\left(A_{1}\right)\right) \cong Z\left(A_{\hbar}\right)$, and
(5) Find a lift of the appropriate basis elements to $s \mathbb{W}_{a}$ to obtain the center of $s \mathbb{W}_{a}$.

Expanding on 2.

Let $B=\bigcup_{k>0} B^{\leq k}$ be a filtered \mathbb{C}-algebra. The Rees algebra of B is the $\mathbb{C}[\hbar]$-algebra $\operatorname{Rees}(B)$, given as a \mathbb{C}-vector space by
$\operatorname{Rees}(B)=\bigoplus_{k \geq 0} B \leq k \hbar^{k}$, with multiplication and the \hbar-action given by

$$
\left(a \hbar^{i}\right)\left(b \hbar^{j}\right)=(a b) \hbar^{i+j} \text { for } a \in B^{\leq i}, b \in B^{\leq j}, \text { and } a b \in B^{\leq i+j},
$$

the product in B. It is graded as a \mathbb{C}-algebra by the powers of \hbar.

Lemma

(1) Let $\bigcup_{i \geq 0} S_{i}$ be a basis of B compatible with the filtration, where S_{i} 's are pairwise disjoint, and $\bigcup_{i=0}^{k} S_{i}$ is a basis of $B^{\leq k}$. Then $\bigcup_{i \geq 0} S_{i} \hbar^{i}$ is a $\mathbb{C}[\hbar]$-basis of $\operatorname{Rees}(B)$.
(2) $Z(\operatorname{Rees}(B))=\operatorname{Rees}(Z(B))$.
(3) $\operatorname{Rees}\left(A_{1}\right) \cong A_{\hbar}$, an isomorphism of $\mathbb{C}[\hbar]$-algebras.

Expanding on 3.

Show that $Z\left(A_{\hbar}\right) \subseteq \mathbb{C}[\hbar]\left[y_{1}, \ldots, y_{a}\right]^{S_{a}}$. Lemma

For $f \in A_{\hbar}$, the following are equivalent:
(0) $f y_{i}=y_{i} f$ for all $i \in[a]=\{1,2, \ldots, a\}$;
(0) $f \in \mathbb{C}[\hbar]\left[y_{1}, \ldots, y_{a}\right]$.

So $Z\left(A_{\hbar}\right) \subseteq \mathbb{C}[\hbar]\left[y_{1}, \ldots, y_{a}\right]$.
Lemma. Let $f \in \mathbb{C}[\hbar]\left[y_{1}, \ldots, y_{a}\right] \subseteq A_{\hbar}$ and $1 \leq i \leq a-1$.
(a) If $f s_{i}=s_{i} f$, then
$f\left(y_{1}, \ldots, y_{i}, y_{i+1}, \ldots, y_{a}\right)=f\left(y_{1}, \ldots, y_{i+1}, y_{i}, \ldots, y_{a}\right)$.
(0) For the special value $\hbar=0$, the converse also holds: if $f\left(y_{1}, \ldots, y_{i}, y_{i+1}, \ldots, y_{a}\right)=f\left(y_{1}, \ldots, y_{i+1}, y_{i}, \ldots, y_{a}\right)$, then $f_{s_{i}}=s_{i} f$ in A_{0}.
So $Z\left(A_{\hbar}\right)$ is a subalgebra of $\mathbb{C}[\hbar]\left[y_{1}, \ldots, y_{a}\right]^{S_{a}}$.

Expanding on 3 (continued).

Consider the following elements in $\mathbb{C}[\hbar]\left[y_{1}, \ldots, y_{a}\right]$:

$$
z_{i j}=\left(y_{i}-y_{j}\right)^{2}, \text { for } 1 \leq i \neq j \leq a \quad \text { and } \quad D_{\hbar}=\prod_{1 \leq i<j \leq a}\left(z_{i j}-\hbar^{2}\right),
$$

where D_{\hbar} is symmetric. So $D_{\hbar} \in \mathbb{C}[\hbar]\left[y_{1}, \ldots, y_{a}\right]^{S_{a}}$. Use D_{\hbar} to produce central elements in A_{\hbar}.

Lemma
(1) For any $1 \leq i \leq a-1, e_{i} \cdot\left(z_{i, i+1}-\hbar^{2}\right)=\left(z_{i, i+1}-\hbar^{2}\right) \cdot e_{i}=0$ in A_{\hbar}, and consequently $e_{i} D_{\hbar}=D_{\hbar} e_{i}=0$.
(2) For any $1 \leq k \leq a-1$, we have $D_{\hbar} s_{k}=s_{k} D_{\hbar}$.
(3) Let $1 \leq i \leq a-1$, and let $\tilde{f} \in \mathbb{C}[\hbar]\left[y_{1}, \ldots, y_{a}\right]$ be symmetric in
y_{i}, y_{i+1}. Then there exist polynomials
$p_{j}=p_{j}\left(y_{1}, \ldots, y_{a}\right) \in \mathbb{C}[\hbar]\left[y_{1}, \ldots, y_{a}\right]$ such that
$\tilde{f} s_{i}=s_{i} \tilde{f}+\sum_{j=0}^{\operatorname{deg} \tilde{f}-1} y_{i}^{j} \cdot e_{i} \cdot p_{j}$.

Expanding on 3 (continued).

Lemma
Let $\tilde{f} \in \mathbb{C}[\hbar]\left[y_{1}, \ldots, y_{a}\right]^{S_{a}}$ be an arbitrary symmetric polynomial, and $c \in \mathbb{C}$. Then $f=D_{\hbar} \tilde{f}+c \in Z\left(A_{\hbar}\right)$.

Expanding on 4.

Proposition. The center $Z\left(A_{0}\right)$ of the graded VW superalgebra $g s W_{a}$ consists of all $f \in \mathbb{C}\left[y_{1}, \ldots, y_{a}\right]$ of the form $f=D_{0} \tilde{f}+c$, for $\tilde{f} \in \mathbb{C}\left[y_{1}, \ldots, y_{a}\right]^{S_{a}}$ and $c \in \mathbb{C}$.

Expanding on 5.

Theorem (BDEHHILNSS)

The center $Z\left(s \mathbb{W}_{a}\right)$ of the VW superalgebra $s \mathbb{W}_{a}=A_{1}$ consists of all $f \in \mathbb{C}\left[y_{1}, \ldots, y_{n}\right]$ of the form $f=D_{1} \tilde{f}+c$, for an arbitrary symmetric polynomial $\tilde{f} \in \mathbb{C}\left[y_{1}, \ldots, y_{a}\right]^{S_{a}}$ and $c \in \mathbb{C}$.

Proof.

For any filtered algebra B there exists a canonical injective algebra homomorphism $\varphi: \operatorname{gr} Z(B) \hookrightarrow Z(\operatorname{gr}(B))$, given by $\varphi\left(f+Z(B)^{\leq(k-1)}\right)=f+B^{\leq(k-1)}$ for $f \in Z(B)^{\leq k}$. For $B=s W_{a}$ and $\underset{\tilde{f}}{\operatorname{gr}}(B)=g s \mathbb{W}_{a}, Z\left(A_{0}\right)$ consists of elements of the form $f=D_{0} \tilde{f}+c$ for \tilde{f} a symmetric polynomial and c a constant. Since $D_{1} \tilde{f}+c \in Z\left(s \mathbb{W}_{a}\right)$, we have $\varphi(c)=c$, and for \tilde{f} symmetric and homogeneous of degree k, $\varphi\left(D_{1} \tilde{f}+s \mathbb{W}_{a}^{\leq a(a-1)+k-1}\right)=D_{0} \tilde{f}$. Using the above Proposition, we see that every $f \in Z\left(g s \mathbb{W}_{a}\right)$ is in the image of φ, so φ is an isomorphism.

Expanding on 5 (continued).

Theorem (BDEHHILNSS)

The center $Z\left(A_{\hbar}\right)$ of the superalgebra A_{\hbar} consists of polynomials $f \in \mathbb{C}[\hbar]\left[y_{1}, \ldots, y_{n}\right]$ of the form $f=D_{\hbar} \tilde{f}+c$, for an arbitrary symmetric polynomial $\tilde{f} \in \mathbb{C}[\hbar]\left[y_{1}, \ldots, y_{a}\right]^{S_{a}}$ and $c \in \mathbb{C}[\hbar]$.

Proof.

The center $Z\left(A_{\hbar}\right)$ is isomorphic to $Z\left(\operatorname{Rees}\left(A_{1}\right)\right)$, which is also isomorphic to $\operatorname{Rees}\left(Z\left(A_{1}\right)\right)$. The center $Z\left(A_{1}\right)$ consists of elements of the form $f=D_{1} \tilde{f}+c$, with $\tilde{f} \in \mathbb{C}\left[y_{1}, \ldots, y_{a}\right]^{S_{a}}$ and $c \in \mathbb{C}$. Assume \tilde{f} is homogeneous of degree k. Then $D_{1} \tilde{f} \in A_{1}^{\leq k+a(a-1)}$, which gives an element $D_{1} \tilde{f} \hbar^{k+a(a-1)}$ of $\operatorname{Rees}\left(Z\left(A_{1}\right)\right) \cong Z\left(\operatorname{Rees}\left(A_{1}\right)\right)$. We see that $Z\left(A_{\hbar}\right)$ is spanned by constants and the preimages under the isomorphism $A_{\hbar} \cong \operatorname{Rees}\left(A_{1}\right)$ of elements $D_{1} \tilde{f} \hbar^{k+a(a-1)}$, which are equal to $D_{\hbar} \tilde{f}$.

