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Preliminaries

Background: vector superspaces. Work over C.

A Z2-graded vector space V = V0 ⊕ V1 is a vector superspace.

The superdimension of V is

dim(V ) := (dimV0|dimV1) = dimV0 − dimV1.

Given a homogeneous element v ∈ V , the parity (or the degree) of v is
denoted by v ∈ {0, 1}.

The parity switching functor π sends V0 7→ V1 and V1 7→ V0.

Let m = dimV0 and n = dimV1.
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Preliminaries

A Lie superalgebra is a Z2-graded vector space g = g0̄ ⊕ g1̄ with
a Lie superbracket (supercommutator) [ , ] : g× g→ g that satisfies
super skew symmetry

[x, y] = xy − (−1)x̄ȳyx = −(−1)x̄ȳ[y, x]

and super Jacobi identity

[x, [y, z]] = [[x, y], z] + (−1)x̄ȳ[y, [x, z]],

for x, y, and z homogeneous.

Now, given a homogeneous ordered basis for

V = C{v1, . . . , vm}︸ ︷︷ ︸
V0

⊕C{v1′ , . . . , vn′}︸ ︷︷ ︸
V1

,

the Lie superalgebra is the endomorphism algebra EndC(V ) explicitly
given by
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Preliminaries

Matrix representation for gl(m|n).

gl(m|n) :=

{(
A B
C D

)
: A ∈Mm,m, B, C

t ∈Mm,n, D ∈Mn,n

}
,

where Mi,j := Mi,j(C).

Since gl(m|n) = gl(m|n)0 ⊕ gl(m|n)1,

gl(m|n)0 =

{(
A 0
0 D

)}
and gl(m|n)1 =

{(
0 B
C 0

)}
.

We say gl(m|n) is the general linear Lie superalgebra, and V is the
natural representation of gl(m|n).

The grading on gl(m|n) is induced by V .
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Periplectic Lie superalgebras p(n)

Periplectic Lie superalgebras p(n).

Let m = n. Then

V = C2n = C{v1, . . . , vn}︸ ︷︷ ︸
V0

⊕C{v1′ , . . . , vn′}︸ ︷︷ ︸
V1

.

Define β : V ⊗ V → C = C0̄ as an odd, symmetric, nondegenerate
bilinear form satisfying:

β(v, w) = β(w, v), β(v, w) = 0 if v = w.

That is, β satisfies
β(v, w) = (−1)v̄w̄β(w, v).

We define periplectic (strange) Lie superalgebras as:

p(n) := {x ∈ EndC(V ) : β(xv,w) + (−1)xvβ(v, xw) = 0}.
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Periplectic Lie superalgebras p(n)

In terms of the above basis,

p(n) =

{(
A B
C −At

)
∈ gl(n|n) : B = Bt, C = −Ct

}
,

where

p(n)0̄ =

{(
A 0
0 −At

)}
∼= gln(C) and p(n)1̄ =

{(
0 B
C 0

)}
.
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Periplectic Lie superalgebras p(n)

Symmetric monoidal structure.

Consider the category C of representations of p(n), where

Homp(n)(V, V
′) := {f : V → V ′ : f homogeneous,C-linear,

f(x.v) = (−1)xfx.f(v), v ∈ V, x ∈ p(n)}.

Then the universal enveloping algebra U(p(n)) is a Hopf superalgebra:

(coproduct) ∆(x) = x⊗ 1 + 1⊗ x,
(counit) ε(x) = 0,
(antipode) S(x) = -x.

So C is a monoidal category.
Now for x⊗ y ∈ U(p(n))⊗ U(p(n)) on v ⊗ w,

(x⊗ y).(v ⊗ w) = (−1)yvxv ⊗ yw.
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Periplectic Lie superalgebras p(n)

Symmetric monoidal structure.

For x, y, a, b ∈ U(p(n)), multiplication is defined as

(x⊗ y) ◦ (a⊗ b) := (−1)ya(x ◦ a)⊗ (y ◦ b),

and for two representations V and V ′, the super swap

σ : V ⊗ V ′ −→ V ′ ⊗ V, σ(v ⊗ w) = (−1)vww ⊗ v

is a map of p(n)-representations whose dual satisfies σ∗ = −σ.
Thus C is a symmetric monoidal category.

Furthermore, β induces an identification between V and its dual V ∗ via
V → V ∗, v 7→ β(v,−), identifying V1 with V ∗

0
and V0 with V ∗

1
.

This induces the dual map (where β = β∗ = 1)

β∗ : C ∼= C∗ −→ (V ⊗ V )∗ ∼= V ⊗ V, β∗(1) =
∑
i

vi′ ⊗ vi − vi ⊗ vi′ .
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Periplectic Lie superalgebras p(n)

Quadratic (fake) Casimir Ω & Jucys-Murphy elements
y`’s.

Now, define

Ω := 2
∑
x∈X

x⊗ x∗ ∈ p(n)⊗ gl(n|n)

(
2Ω = +

)
,

where X is a basis of p(n) and x∗ ∈ p(n)∗ is a dual basis element of
p(n), with p(n)∗ = p(n)⊥, taken with respect to the supertrace:

str

(
A B
C D

)
= tr(A)− tr(D).

The actions of Ω and p(n) commute on M ⊗ V , so Ω is in the
centralizer Endp(n)(M ⊗ V ).
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Periplectic Lie superalgebras p(n)

We define

Y` : M ⊗ V ⊗a −→M ⊗ V ⊗a as Y` :=

`−1∑
i=0

Ωi,` = ,

where Ωi,` acts on the i-th and `-th factor, and identity otherwise,
where the 0-th factor is the module M .
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Schur-Weyl duality

Review: classical Schur-Weyl duality.

Let W be an n-dimensional complex vector space. Consider W⊗a.
Then the symmetric group Sa acts on W⊗a by permuting the factors:
for si = (i i+ 1) ∈ Sa,

si.(w1 ⊗ · · · ⊗ wa) = w1 ⊗ · · · ⊗ wi+1 ⊗ wi ⊗ · · · ⊗ wa.

We also have the full linear group GL(W ) acting on W⊗a via the
diagonal action: for g ∈ GL(W ),

g.(w1 ⊗ · · · ⊗ wa) = gw1 ⊗ · · · ⊗ gwa.

Then actions of GL(W ) (left natural action) and Sa (right permutation
action) commute giving us the following:
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Schur-Weyl duality

Classical Schur-Weyl duality.

Consider the natural representations

(CSa)op
φ−→ EndC(W⊗a) and GL(W )

ψ−→ EndC(W⊗a).

Then Schur-Weyl duality gives us
1 φ(CSa) = EndGL(W )(W

⊗a),
2 if n ≥ a, then φ is injective. So imφ ∼= EndGL(W )(W

⊗a),
3 ψ(GL(W )) = EndCSa(W⊗a),
4 there is an irreducible (GL(W ), (CSa)op)-bimodule decomposition

(see next slide):
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Schur-Weyl duality

Classical Schur-Weyl duality (continued).

W⊗a =
⊕

λ=(λ1,λ2,...)`a
`(λ)≤n

∆λ ⊗ Sλ,

where
∆λ is an irreducible GL(W )-module associated to the partition λ,
Sλ is an irreducible CSa (Specht) module associated to λ, and
`(λ) = max{i ∈ Z : λi 6= 0, λ = (λ1, λ2, . . .)}.

In the above setting, we say CSa and GL(W ) in EndC(W⊗a) are
centralizers of one another.
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Schur-Weyl duality

Other cases of Schur-Weyl duality.

For the orthogonal group O(n) and symplectic group Sp2n, the
symmetric group Sn should be replaced by a Brauer algebra.

A Brauer algebra Br
(x)
a with a parameter x ∈ C is a unital C-algebra

with generators s1, . . . , sa−1, e1, . . . , ea−1 and relations:

s2
i = 1, e2

i = xei, eisi = ei = siei for all 1 ≤ i ≤ a− 1,

sisj = sjsi, siej = ejsi, eiej = ejei for all 1 ≤ i < j − 1 ≤ a− 2,

sisi+1si = si+1sisi+1 for all 1 ≤ i ≤ a− 2,

eiei+1ei = ei, ei+1eiei+1 = ei+1 for all 1 ≤ i ≤ a− 2,

siei+1ei = si+1ei, ei+1eisi+1 = ei+1si for all 1 ≤ i ≤ a− 2.
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Schur-Weyl duality

The group ring of the Brauer algebra Br
(n)
a and O(n) in End(W⊗a)

centralize one another, where dimW = n,

and

the group ring of the Brauer algebra Br
(−2n)
a and Sp2n in End(V ⊗a)

centralize one another, where dimV = 2n.
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Schur-Weyl duality

Now, in higher Schur-Weyl duality, we construct a result analogous to

CSa ∼= EndGL(W )(W
⊗a),

but we use the existence of commuting actions on the tensor product
of arbitrary gln-representation M with W⊗a:

gln �M ⊗W⊗a 	 Ha,

where Ha is the degenerate affine Hecke algebra, i.e., it is a
deformation of the symmetric group Sa.

The algebra Ha has generators s1, . . . , sa−1, y1, . . . , ya and relations

s2
i = 1,

sisj = sjsi whenever |i− j|> 1,

sisi+1si = si+1sisi+1,

yiyj = yjyi,

yisj = sjyi whenever i− j 6= 0, 1,

yi+1si = siyi + 1.
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Schur-Weyl duality

The Hecke algebra Ha contains the symmetric algebra CSa and the
polynomial algebra C[y1, . . . , ya] as subalgebras.

So as a vector space, Ha
∼= CSa ⊗ C[y1, . . . , ya], and has a basis

B = {wyk1
1 · · · y

ka
a : w ∈ Sa, ki ∈ N0}.

Our goal: construct higher Schur-Weyl duality for p(n).

That is, construct another algebra whose action on M ⊗ V ⊗a
commutes with the action of p(n).

This algebra is precisely the degenerate affine Brauer superalgebra
sVVa.
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Degenerate affine Brauer superalgebras

Degenerate affine Brauer superalgebras (generators
and local moves).

sVVa has generators si, bi, b∗i , yj , where i = 1, . . . , a− 1, j = 1, . . . , a and
relations

= =

= =

=

Continued in the next slide.
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Degenerate affine Brauer superalgebras

Degenerate affine Brauer superalgs (local moves).

= − = −

= (braid reln) = (braid reln)

= (adjunction) = − (adjunction)

= (untwisting reln) =

= − (untwisting reln) =
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Degenerate affine Brauer superalgebras

Degenerate affine Brauer superalgs (local moves).

= =

= =

= =

= + − =

− = − − =

Lemma. For any k ≥ 0,
k = 0.
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Degenerate affine Brauer superalgebras

Normal diagrams.

Call a diagram d ∈ HomsBr (a, b) normal if all of the following hold:
any two strings intersect at most once;
no string intersects itself;
no two cups or caps are at the same height;
all cups are above all caps;
the height of caps decreases when the caps are ordered from left
to right with respect to their left ends;
the height of cups increases when the cups are ordered from left
to right with respect to their left ends.

Every string in a normal diagram has either one cup, or one cap, or no
cups and caps, and there are no closed loops. A diagram with no
loops in HomsBr (a, b) has a+b

2 strings. In particular, if a+ b is odd then
the Hom-space is zero.
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Degenerate affine Brauer superalgebras

Example: normal diagram in the signed Brauer
algebra sBra.

Algebraically, it is written as s2s3s5b
∗
2b2b

∗
4b4s1s3s6.

The monomial corresponding to a normal diagram is called a regular
monomial.
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Degenerate affine Brauer superalgebras

Connectors.

Each normal diagram d ∈ HomsBr (a, b), where a, b ∈ N0, gives rise to a
partition P (d) of the set of a+ b points into 2-element subsets given by
the endpoints of the strings in d.

We call such a partition a connector, and write Conn(a, b) as the set of
all such connectors. Its size is (a+ b− 1)!!.
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Degenerate affine Brauer superalgebras

Example. Let a = b = 2. Label the endpoints along the bottom row of
d as 1 and 2 (reading from left to right), and label the endpoints along
the top row of d as 1̄ and 2̄ (reading from left to right). Then

HomsBr (2, 2) =

 1 2

1̄ 2̄

︸ ︷︷ ︸
dI

,

1 2

1̄ 2̄

︸ ︷︷ ︸
ds

,

1 2

1̄ 2̄

︸ ︷︷ ︸
de


.

Three possible connectors for a diagram in HomsBr (2, 2):

P (dI) = {{1, 1̄}, {2, 2̄}},
P (ds) = {{1, 2̄}, {2, 1̄}},
P (de) = {{1, 2}, {1̄, 2̄}},

and Conn(2, 2) = {P (dI), P (ds), P (de)}.
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Degenerate affine Brauer superalgebras

For each connector c ∈ Conn(a, b), we pick a normal diagram
dc ∈ P−1(c) ⊂ HomsBr (a, b).

Remark. Different normal diagrams in a single fibre P−1(c) differ only
by braid relations, and thus represent the same morphism.
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Theorem (BDEHHILNSS)

The set Sa,b = {dc : c ∈ Conn(a, b)} is a basis of HomsBr (a, b).

A dotted diagram d ∈ HomsVV (a, b) is normal if:
the underlying diagram obtained by erasing the dots is normal;
all dots on cups and caps are on the leftmost end, and all dots on
the through strings are at the bottom.

Example. A normal diagram in HomsVV (7, 7):

Algebraically, it is written as y4
2s2s3s5b

∗
2b2b

∗
4b4s1s3s6y1y

3
2y3y6.
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Normal dotted diagrams.

Let S•a,b be the normal dotted diagrams obtained by taking all diagrams
in Sa,b and adding dots to them in all possible ways.

Let S≤ka,b ⊆ S
•
a,b be the diagrams with at most k dots.

Theorem (Basis theorem, BDEHHILNSS)

The set S≤ka,b is a basis of HomsVV (a, b)≤k, and the set S•a,b is a basis of
HomsVV (a, b).

Our affine VW superalgebra sVVa is:
super (signed) version of the degenerate BMW algebra,
the signed version of the affine VW algebra, and
an affine version of the Brauer superalgebra.
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The center of affine VW superalgebras

The center of sVVa = EndsVV (a), a ≥ 2 ∈ N.

Theorem (BDEHHILNSS)

The center Z(sVVa) consists of all polynomials of the form∏
1≤i<j≤a

((yi − yj)2 − 1)f̃ + c,

where f̃ ∈ C[y1, . . . , ya]
Sa and c ∈ C.

The deformed squared Vandermonde determinant∏
1≤i<j≤a((yi − yj)2 − 1) is symmetric, so∏

1≤i<j≤a
((yi − yj)2 − 1) ∈ C[y1, . . . , ya]

Sa .
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Affine VW supercategory and Brauer supercategory

Affine VW supercategory sVV and connections to
Brauer supercategory sBr.
The affine VW supercategory (or the affine Nazarov-Wenzl
supercategory) is the C-linear strict monoidal supercategory generated
as a monoidal supercategory by a single objectF, morphisms
s = :F⊗F −→F⊗F, [ = :F⊗F→ 1,

[∗ = : 1→F⊗F, and an additional morphism

y = :F⊗F −→F⊗F, subject to the braid, snake (adjunction),

and untwisting relations, and the dot relations:

= + − = + .

Objects in sVV can be identified with natural numbers, identifying
a ∈ N0 withF⊗a,F⊗0 = 1, and the morphisms are linear
combinations of dotted diagrams.
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Affine VW supercategory and Brauer supercategory

sVV and sBr.

The category sVV can alternatively be generated by vertically stacking
[i, [∗i , si, and yi = 1i−1 ⊗ y ⊗ 1a−i ∈ HomsVV (a, a).

It is a filtered category, i.e., the hom spaces HomsVV (a, b) have a
filtration by the span HomsVV (a, b)≤k of all dotted diagrams with at most
k dots.

The Brauer supercategory sBr is the C-linear strict monoidal
supercategory generated as a monoidal supercategory by a single
objectF, and morphisms s = :F⊗F −→F⊗F,
[ = :F⊗F→ 1, and [∗ = : 1→F⊗F, subject to the relations
above.

If M is the trivial representation, then actions on sVV factor through sBr.
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Affine VW supercategory and Brauer supercategory

Thank you. Questions?
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Affine VW supercategory and Brauer supercategory

The algebra Ah̄ and its specializations At, where t ∈ C.

Definition

Let Ah̄ be the superalgebra over C[h̄] with generators si, ei, yj for 1 ≤ i ≤ a− 1, 1 ≤ j ≤ a, where
si = ei = yj = 0, subject to the relations:

1 Involutions: s2i = 1 for 1 ≤ i < a.

2 Commutation relations:

1 siej = ejsi if |i− j|> 1,
2 eiej = ejei if |i− j|> 1,
3 eiyj = yjei if j 6= i, i + 1,
4 yiyj = yjyi for 1 ≤ i, j ≤ a.

3 Affine braid relations:

1 sisj = sjsi if |i− j|> 1,
2 sisi+1si = si+1sisi+1 for

1 ≤ i ≤ a− 1,
3 siyj = yjsi if j 6= i, i + 1.

4 Snake relations:

1 ei+1eiei+1 = −ei+1,
2 eiei+1ei = −ei for 1 ≤ i ≤ a− 2.

5 Tangle and untwisting relations:

1 eisi = ei and siei = −ei for
1 ≤ i ≤ a− 1,

2 siei+1ei = si+1ei,
3 si+1eiei+1 = −siei+1,
4 ei+1eisi+1 = ei+1si,
5 eiei+1si = −eisi+1 for 1 ≤ i ≤ a− 2.

6 Idempotent relations: e2i = 0 for 1 ≤ i ≤ a− 1.

7 Skein relations:

1 siyi − yi+1si = −h̄ei − h̄,
2 yisi − siyi+1 = h̄ei − h̄ for

1 ≤ i ≤ a− 1.

8 Unwrapping relations: e1yk1 e1 = 0 for k ∈ N.

9 (Anti)-symmetry relations:

1 ei(yi+1 − yi) = h̄ei,
2 (yi+1 − yi)ei = −h̄ei for

1 ≤ i ≤ a− 1.

For t ∈ C, let At be the quotient of Ah̄ by the ideal generated by h̄− t.
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A sketch of proof of the Theorem on slide 27

A sketch of proof of the Theorem on slide 27.

1 The filtered algebra sVVa (via the filtration by the degree of the
polynomials in C[y1, . . . , ya]) is a Poincaré-Birkhoff-Witt (PBW)
deformation of the associated graded superalgebra
gsVVa = gr(sVVa),

2 For h̄ a parameter, the Rees construction gives the algebra Ah̄
over C[h̄] such that the specializations h̄ = 1 and h̄ = 0 are
precisely A1 = sVVa and A0 = gsVVa,

3 Describe the center of the C[h̄]-algebra Ah̄, and all its
specializations At for any t ∈ C using the Basis Theorem,

4 Determine the center of gsVVa using the isomorphism
Rees(Z(A1)) ∼= Z(Rees(A1)) ∼= Z(Ah̄), and

5 Find a lift of the appropriate basis elements to sVVa to obtain the
center of sVVa.
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A sketch of proof of the Theorem on slide 27

Expanding on 2.

Let B =
⋃
k≥0B

≤k be a filtered C-algebra. The Rees algebra of B is
the C[h̄]-algebra Rees(B), given as a C-vector space by
Rees(B) =

⊕
k≥0B

≤kh̄k, with multiplication and the h̄-action given by

(ah̄i)(bh̄j) = (ab)h̄i+j for a ∈ B≤i, b ∈ B≤j , and ab ∈ B≤i+j ,

the product in B. It is graded as a C-algebra by the powers of h̄.

Lemma
1 Let

⋃
i≥0 Si be a basis of B compatible with the filtration, where

Si’s are pairwise disjoint, and
⋃k
i=0 Si is a basis of B≤k. Then⋃

i≥0 Sih̄
i is a C[h̄]-basis of Rees(B).

2 Z(Rees(B)) = Rees(Z(B)).
3 Rees(A1) ∼= Ah̄, an isomorphism of C[h̄]-algebras.
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A sketch of proof of the Theorem on slide 27

Expanding on 3.
Show that Z(Ah̄) ⊆ C[h̄][y1, . . . , ya]

Sa .
Lemma

For f ∈ Ah̄, the following are equivalent:
(a) fyi = yif for all i ∈ [a] = {1, 2, . . . , a};
(b) f ∈ C[h̄][y1, . . . , ya].

So Z(Ah̄) ⊆ C[h̄][y1, . . . , ya].

Lemma. Let f ∈ C[h̄][y1, . . . , ya] ⊆ Ah̄ and 1 ≤ i ≤ a− 1.
(a) If fsi = sif , then

f(y1, . . . , yi, yi+1, . . . , ya) = f(y1, . . . , yi+1, yi, . . . , ya).
(b) For the special value h̄ = 0, the converse also holds: if

f(y1, . . . , yi, yi+1, . . . , ya) = f(y1, . . . , yi+1, yi, . . . , ya), then
fsi = sif in A0.

So Z(Ah̄) is a subalgebra of C[h̄][y1, . . . , ya]
Sa .
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A sketch of proof of the Theorem on slide 27

Expanding on 3 (continued).

Consider the following elements in C[h̄][y1, . . . , ya]:

zij = (yi − yj)2, for 1 ≤ i 6= j ≤ a and Dh̄ =
∏

1≤i<j≤a
(zij − h̄2),

where Dh̄ is symmetric. So Dh̄ ∈ C[h̄][y1, . . . , ya]
Sa .

Use Dh̄ to produce central elements in Ah̄.

Lemma
1 For any 1 ≤ i ≤ a− 1, ei · (zi,i+1 − h̄2) = (zi,i+1 − h̄2) · ei = 0 in Ah̄,

and consequently eiDh̄ = Dh̄ei = 0.
2 For any 1 ≤ k ≤ a− 1, we have Dh̄sk = skDh̄.
3 Let 1 ≤ i ≤ a− 1, and let f̃ ∈ C[h̄][y1, . . . , ya] be symmetric in
yi, yi+1. Then there exist polynomials
pj = pj(y1, . . . , ya) ∈ C[h̄][y1, . . . , ya] such that

f̃ si = sif̃ +
∑deg f̃−1

j=0 yji · ei · pj .
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A sketch of proof of the Theorem on slide 27

Expanding on 3 (continued).

Lemma

Let f̃ ∈ C[h̄][y1, . . . , ya]
Sa be an arbitrary symmetric polynomial, and

c ∈ C. Then f = Dh̄f̃ + c ∈ Z(Ah̄).

Expanding on 4.

Proposition. The center Z(A0) of the graded VW
superalgebra gsVVa consists of all f ∈ C[y1, . . . , ya] of
the form f = D0f̃ + c, for f̃ ∈ C[y1, . . . , ya]

Sa and c ∈ C.

Mee Seong Im The affine VW supercategory July 25, 2018 38 / 40



A sketch of proof of the Theorem on slide 27

Expanding on 5.

Theorem (BDEHHILNSS)

The center Z(sVVa) of the VW superalgebra sVVa = A1 consists of all
f ∈ C[y1, . . . , yn] of the form f = D1f̃ + c, for an arbitrary symmetric
polynomial f̃ ∈ C[y1, . . . , ya]

Sa and c ∈ C.

Proof.
For any filtered algebra B there exists a canonical injective algebra
homomorphism ϕ : grZ(B) ↪→ Z(gr(B)), given by
ϕ(f + Z(B)≤(k−1)) = f +B≤(k−1) for f ∈ Z(B)≤k. For B = sVVa and
gr(B) = gsVVa, Z(A0) consists of elements of the form f = D0f̃ + c for
f̃ a symmetric polynomial and c a constant. Since D1f̃ + c ∈ Z(sVVa),
we have ϕ(c) = c, and for f̃ symmetric and homogeneous of degree k,
ϕ(D1f̃ + sVV

≤a(a−1)+k−1
a ) = D0f̃ . Using the above Proposition, we see

that every f ∈ Z(gsVVa) is in the image of ϕ, so ϕ is an
isomorphism.
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Expanding on 5 (continued).

Theorem (BDEHHILNSS)

The center Z(Ah̄) of the superalgebra Ah̄ consists of polynomials
f ∈ C[h̄][y1, . . . , yn] of the form f = Dh̄f̃ + c, for an arbitrary symmetric
polynomial f̃ ∈ C[h̄][y1, . . . , ya]

Sa and c ∈ C[h̄].

Proof.
The center Z(Ah̄) is isomorphic to Z(Rees(A1)), which is also
isomorphic to Rees(Z(A1)). The center Z(A1) consists of elements of
the form f = D1f̃ + c, with f̃ ∈ C[y1, . . . , ya]

Sa and c ∈ C. Assume f̃ is
homogeneous of degree k. Then D1f̃ ∈ A≤k+a(a−1)

1 , which gives an
element D1f̃ h̄

k+a(a−1) of Rees(Z(A1)) ∼= Z(Rees(A1)). We see that
Z(Ah̄) is spanned by constants and the preimages under the
isomorphism Ah̄ ∼= Rees(A1) of elements D1f̃ h̄

k+a(a−1), which are
equal to Dh̄f̃ .

Mee Seong Im The affine VW supercategory July 25, 2018 40 / 40


	Preliminaries
	Preliminaries
	Periplectic Lie superalgebras p(n)
	Periplectic Lie superalgebras p(n)
	Periplectic Lie superalgebras p(n)
	Schur-Weyl duality
	Schur-Weyl duality
	Degenerate affine Brauer superalgebras
	
	The center of affine VW superalgebras
	Affine VW supercategory and Brauer supercategory
	A sketch of proof of the Theorem on slide 27

